Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interplays between nitric oxide and reactive oxygen species in cryptogein signalling.

Identifieur interne : 000E36 ( Main/Exploration ); précédent : 000E35; suivant : 000E37

Interplays between nitric oxide and reactive oxygen species in cryptogein signalling.

Auteurs : Anna Kulik [France] ; Elodie Noirot ; Vincent Grandperret ; Stéphane Bourque ; Jérôme Fromentin ; Pauline Salloignon ; Caroline Truntzer ; Gra Yna Dobrowolska ; Françoise Simon-Plas ; David Wendehenne

Source :

RBID : pubmed:24506708

Descripteurs français

English descriptors

Abstract

Nitric oxide (NO) has many functions in plants. Here, we investigated its interplays with reactive oxygen species (ROS) in the defence responses triggered by the elicitin cryptogein. The production of NO induced by cryptogein in tobacco cells was partly regulated through a ROS-dependent pathway involving the NADPH oxidase NtRBOHD. In turn, NO down-regulated the level of H2O2. Both NO and ROS synthesis appeared to be under the control of type-2 histone deacetylases acting as negative regulators of cell death. Occurrence of an interplay between NO and ROS was further supported by the finding that cryptogein triggered a production of peroxynitrite (ONOO(-)). Next, we showed that ROS, but not NO, negatively regulate the intensity of activity of the cryptogein-induced protein kinase NtOSAK. Furthermore, using a DNA microarray approach, we identified 15 genes early induced by cryptogein via NO. A part of these genes was also modulated by ROS and encoded proteins showing sequence identity to ubiquitin ligases. Their expression appeared to be negatively regulated by ONOO(-), suggesting that ONOO(-) mitigates the effects of NO and ROS. Finally, we provided evidence that NO required NtRBOHD activity for inducing cell death, thus confirming previous assumption that ROS channel NO through cell death pathways.

DOI: 10.1111/pce.12295
PubMed: 24506708


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interplays between nitric oxide and reactive oxygen species in cryptogein signalling.</title>
<author>
<name sortKey="Kulik, Anna" sort="Kulik, Anna" uniqKey="Kulik A" first="Anna" last="Kulik">Anna Kulik</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon cédex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon cédex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Bourgogne-Franche-Comté</region>
<region type="old region" nuts="2">Bourgogne</region>
<settlement type="city">Dijon cédex</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Noirot, Elodie" sort="Noirot, Elodie" uniqKey="Noirot E" first="Elodie" last="Noirot">Elodie Noirot</name>
</author>
<author>
<name sortKey="Grandperret, Vincent" sort="Grandperret, Vincent" uniqKey="Grandperret V" first="Vincent" last="Grandperret">Vincent Grandperret</name>
</author>
<author>
<name sortKey="Bourque, Stephane" sort="Bourque, Stephane" uniqKey="Bourque S" first="Stéphane" last="Bourque">Stéphane Bourque</name>
</author>
<author>
<name sortKey="Fromentin, Jerome" sort="Fromentin, Jerome" uniqKey="Fromentin J" first="Jérôme" last="Fromentin">Jérôme Fromentin</name>
</author>
<author>
<name sortKey="Salloignon, Pauline" sort="Salloignon, Pauline" uniqKey="Salloignon P" first="Pauline" last="Salloignon">Pauline Salloignon</name>
</author>
<author>
<name sortKey="Truntzer, Caroline" sort="Truntzer, Caroline" uniqKey="Truntzer C" first="Caroline" last="Truntzer">Caroline Truntzer</name>
</author>
<author>
<name sortKey="Dobrowolska, Gra Yna" sort="Dobrowolska, Gra Yna" uniqKey="Dobrowolska G" first="Gra Yna" last="Dobrowolska">Gra Yna Dobrowolska</name>
</author>
<author>
<name sortKey="Simon Plas, Francoise" sort="Simon Plas, Francoise" uniqKey="Simon Plas F" first="Françoise" last="Simon-Plas">Françoise Simon-Plas</name>
</author>
<author>
<name sortKey="Wendehenne, David" sort="Wendehenne, David" uniqKey="Wendehenne D" first="David" last="Wendehenne">David Wendehenne</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:24506708</idno>
<idno type="pmid">24506708</idno>
<idno type="doi">10.1111/pce.12295</idno>
<idno type="wicri:Area/Main/Corpus">001133</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001133</idno>
<idno type="wicri:Area/Main/Curation">001133</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001133</idno>
<idno type="wicri:Area/Main/Exploration">001133</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interplays between nitric oxide and reactive oxygen species in cryptogein signalling.</title>
<author>
<name sortKey="Kulik, Anna" sort="Kulik, Anna" uniqKey="Kulik A" first="Anna" last="Kulik">Anna Kulik</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon cédex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon cédex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Bourgogne-Franche-Comté</region>
<region type="old region" nuts="2">Bourgogne</region>
<settlement type="city">Dijon cédex</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Noirot, Elodie" sort="Noirot, Elodie" uniqKey="Noirot E" first="Elodie" last="Noirot">Elodie Noirot</name>
</author>
<author>
<name sortKey="Grandperret, Vincent" sort="Grandperret, Vincent" uniqKey="Grandperret V" first="Vincent" last="Grandperret">Vincent Grandperret</name>
</author>
<author>
<name sortKey="Bourque, Stephane" sort="Bourque, Stephane" uniqKey="Bourque S" first="Stéphane" last="Bourque">Stéphane Bourque</name>
</author>
<author>
<name sortKey="Fromentin, Jerome" sort="Fromentin, Jerome" uniqKey="Fromentin J" first="Jérôme" last="Fromentin">Jérôme Fromentin</name>
</author>
<author>
<name sortKey="Salloignon, Pauline" sort="Salloignon, Pauline" uniqKey="Salloignon P" first="Pauline" last="Salloignon">Pauline Salloignon</name>
</author>
<author>
<name sortKey="Truntzer, Caroline" sort="Truntzer, Caroline" uniqKey="Truntzer C" first="Caroline" last="Truntzer">Caroline Truntzer</name>
</author>
<author>
<name sortKey="Dobrowolska, Gra Yna" sort="Dobrowolska, Gra Yna" uniqKey="Dobrowolska G" first="Gra Yna" last="Dobrowolska">Gra Yna Dobrowolska</name>
</author>
<author>
<name sortKey="Simon Plas, Francoise" sort="Simon Plas, Francoise" uniqKey="Simon Plas F" first="Françoise" last="Simon-Plas">Françoise Simon-Plas</name>
</author>
<author>
<name sortKey="Wendehenne, David" sort="Wendehenne, David" uniqKey="Wendehenne D" first="David" last="Wendehenne">David Wendehenne</name>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fungal Proteins (metabolism)</term>
<term>Fungal Proteins (pharmacology)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Genes, Plant (MeSH)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Nitric Oxide (metabolism)</term>
<term>Peroxynitrous Acid (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Suspensions (MeSH)</term>
<term>Tobacco (cytology)</term>
<term>Tobacco (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide peroxynitreux (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Monoxyde d'azote (métabolisme)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéines fongiques (pharmacologie)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Suspensions (MeSH)</term>
<term>Tabac (cytologie)</term>
<term>Tabac (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Hydrogen Peroxide</term>
<term>Nitric Oxide</term>
<term>Peroxynitrous Acid</term>
<term>Plant Proteins</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Signal Transduction</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Tabac</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide peroxynitreux</term>
<term>Espèces réactives de l'oxygène</term>
<term>Monoxyde d'azote</term>
<term>Peroxyde d'hydrogène</term>
<term>Protéines fongiques</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genes, Plant</term>
<term>Models, Biological</term>
<term>Suspensions</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Modèles biologiques</term>
<term>Suspensions</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nitric oxide (NO) has many functions in plants. Here, we investigated its interplays with reactive oxygen species (ROS) in the defence responses triggered by the elicitin cryptogein. The production of NO induced by cryptogein in tobacco cells was partly regulated through a ROS-dependent pathway involving the NADPH oxidase NtRBOHD. In turn, NO down-regulated the level of H2O2. Both NO and ROS synthesis appeared to be under the control of type-2 histone deacetylases acting as negative regulators of cell death. Occurrence of an interplay between NO and ROS was further supported by the finding that cryptogein triggered a production of peroxynitrite (ONOO(-)). Next, we showed that ROS, but not NO, negatively regulate the intensity of activity of the cryptogein-induced protein kinase NtOSAK. Furthermore, using a DNA microarray approach, we identified 15 genes early induced by cryptogein via NO. A part of these genes was also modulated by ROS and encoded proteins showing sequence identity to ubiquitin ligases. Their expression appeared to be negatively regulated by ONOO(-), suggesting that ONOO(-) mitigates the effects of NO and ROS. Finally, we provided evidence that NO required NtRBOHD activity for inducing cell death, thus confirming previous assumption that ROS channel NO through cell death pathways.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24506708</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>01</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Interplays between nitric oxide and reactive oxygen species in cryptogein signalling.</ArticleTitle>
<Pagination>
<MedlinePgn>331-48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.12295</ELocationID>
<Abstract>
<AbstractText>Nitric oxide (NO) has many functions in plants. Here, we investigated its interplays with reactive oxygen species (ROS) in the defence responses triggered by the elicitin cryptogein. The production of NO induced by cryptogein in tobacco cells was partly regulated through a ROS-dependent pathway involving the NADPH oxidase NtRBOHD. In turn, NO down-regulated the level of H2O2. Both NO and ROS synthesis appeared to be under the control of type-2 histone deacetylases acting as negative regulators of cell death. Occurrence of an interplay between NO and ROS was further supported by the finding that cryptogein triggered a production of peroxynitrite (ONOO(-)). Next, we showed that ROS, but not NO, negatively regulate the intensity of activity of the cryptogein-induced protein kinase NtOSAK. Furthermore, using a DNA microarray approach, we identified 15 genes early induced by cryptogein via NO. A part of these genes was also modulated by ROS and encoded proteins showing sequence identity to ubiquitin ligases. Their expression appeared to be negatively regulated by ONOO(-), suggesting that ONOO(-) mitigates the effects of NO and ROS. Finally, we provided evidence that NO required NtRBOHD activity for inducing cell death, thus confirming previous assumption that ROS channel NO through cell death pathways.</AbstractText>
<CopyrightInformation>© 2014 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kulik</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon cédex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Noirot</LastName>
<ForeName>Elodie</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grandperret</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bourque</LastName>
<ForeName>Stéphane</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fromentin</LastName>
<ForeName>Jérôme</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Salloignon</LastName>
<ForeName>Pauline</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Truntzer</LastName>
<ForeName>Caroline</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dobrowolska</LastName>
<ForeName>Grażyna</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Simon-Plas</LastName>
<ForeName>Françoise</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wendehenne</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013535">Suspensions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C061032">cryptogein protein, Phytophthora cryptogea</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>14691-52-2</RegistryNumber>
<NameOfSubstance UI="D030421">Peroxynitrous Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030421" MajorTopicYN="N">Peroxynitrous Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013535" MajorTopicYN="N">Suspensions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NADPH oxidase</Keyword>
<Keyword MajorTopicYN="N">SnRK2 protein kinase.</Keyword>
<Keyword MajorTopicYN="N">cell death</Keyword>
<Keyword MajorTopicYN="N">cryptogein</Keyword>
<Keyword MajorTopicYN="N">defence responses</Keyword>
<Keyword MajorTopicYN="N">histone deacetylase</Keyword>
<Keyword MajorTopicYN="N">peroxynitrite</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24506708</ArticleId>
<ArticleId IdType="doi">10.1111/pce.12295</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Bourgogne</li>
<li>Bourgogne-Franche-Comté</li>
</region>
<settlement>
<li>Dijon cédex</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bourque, Stephane" sort="Bourque, Stephane" uniqKey="Bourque S" first="Stéphane" last="Bourque">Stéphane Bourque</name>
<name sortKey="Dobrowolska, Gra Yna" sort="Dobrowolska, Gra Yna" uniqKey="Dobrowolska G" first="Gra Yna" last="Dobrowolska">Gra Yna Dobrowolska</name>
<name sortKey="Fromentin, Jerome" sort="Fromentin, Jerome" uniqKey="Fromentin J" first="Jérôme" last="Fromentin">Jérôme Fromentin</name>
<name sortKey="Grandperret, Vincent" sort="Grandperret, Vincent" uniqKey="Grandperret V" first="Vincent" last="Grandperret">Vincent Grandperret</name>
<name sortKey="Noirot, Elodie" sort="Noirot, Elodie" uniqKey="Noirot E" first="Elodie" last="Noirot">Elodie Noirot</name>
<name sortKey="Salloignon, Pauline" sort="Salloignon, Pauline" uniqKey="Salloignon P" first="Pauline" last="Salloignon">Pauline Salloignon</name>
<name sortKey="Simon Plas, Francoise" sort="Simon Plas, Francoise" uniqKey="Simon Plas F" first="Françoise" last="Simon-Plas">Françoise Simon-Plas</name>
<name sortKey="Truntzer, Caroline" sort="Truntzer, Caroline" uniqKey="Truntzer C" first="Caroline" last="Truntzer">Caroline Truntzer</name>
<name sortKey="Wendehenne, David" sort="Wendehenne, David" uniqKey="Wendehenne D" first="David" last="Wendehenne">David Wendehenne</name>
</noCountry>
<country name="France">
<region name="Bourgogne-Franche-Comté">
<name sortKey="Kulik, Anna" sort="Kulik, Anna" uniqKey="Kulik A" first="Anna" last="Kulik">Anna Kulik</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E36 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E36 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24506708
   |texte=   Interplays between nitric oxide and reactive oxygen species in cryptogein signalling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24506708" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024